)

Check for
updates

A Natural Formalized Proof Language

Lihan Xie, Zhicheng Hui, and Qinxiang Cao(®
Shanghai Jiao Tong University, Shanghai, China
{sheringham,laplace_demon}@sjtu.edu.cn, caoginxiang@gmail.com

Abstract. Artificial intelligence assisted mathematical proof has
become a highly focused area nowadays. One key problem in this field
is to generate formal mathematical proofs from natural language proofs.
Due to historical reasons, the formal proof languages adopted by tra-
ditional theorem provers were not intended to represent natural lan-
guage proofs. Therefore, they are not well-suited for the aforementioned
tasks and proof-checking work for educational purposes. In this paper,
we design a proof language and its corresponding abstract syntax tree
and implement a proof checking tool for it. This language can be easily
converted from natural language, thus providing a rich corpus of for-
mal proof. Additionally, it supports the handling of issues in informal
proofs through static analysis, and enhances the expressive power of the
language by introducing the structure of partial proofs. This design com-
bines the expressiveness of natural language and the accuracy of formal
language, resulting in an improved mathematical proof language.

Keywords: Formal proof language + Theorem proving + Static analysis

1 Introduction

Formal mathematical proofs are based on rigorous reasoning in formal logic,
providing a completely accurate proof process that can be automatically verified
by computers. Formalizing informal proofs can make them more convincing, as
seen in the formal proof of the Four-Color Theorem [1,11]. Additionally, auto-
mated theorem proving relies on formal proof languages to generate rigorous
proofs. The rise of large language models in recent years has spurred research
in Al-assisted mathematical proof, particularly in the fields of automated the-
orem proving and transforming informal proofs into formal proofs [14,20]. This
means that large language models can directly generate formal proofs or indi-
rectly transform natural language proofs into formal proofs. These formal proofs
can then be verified by theorem provers, ensuring their correctness.

Due to historical reasons, early versions of theorem provers were primarily
focused on ensuring the correctness of proofs, rather than directly modelling
natural language proofs. Subsequent developments, such as the Ltac [9] tac-
tic language in Coq [2] and Isar [19] proof language in Isabelle [16], aimed to

L. Xie and Z. Hui—contributed equally to this work.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W.-N. Chin and Z. Xu (Eds.): TASE 2024, LNCS 14777, pp. 446-464, 2024.
https://doi.org/10.1007,/978-3-031-64626-3_26

A Natural Formalized Proof Language 447

help with proof constructions. Commands in these languages can be seen as
transformations that modify the current proof goal, where each proof goal com-
prises named premises and the conclusion that needs to be proved. However,
it is still difficult to translate natural language proofs word-for-word into such
formal proof languages. Consequently, for current applications like Al-assisted
mathematical proofs or automated proof grading for educational purposes, these
formal languages seem to be insufficient.

In the following example shown in Fig.1 about the proof of the monotone
convergence theorem through the supremum theorem, we can observe several
characteristics of natural language proofs and the difficulties consequent upon
the task of formalization using existing formal proof languages like Coq. We will
also demonstrate how our work circumvents these difficulties.

Monotone Convergence Theorem: For every sequence of real numbers (an)nen,
(an)newn converges if it is monotonically increasing and bounded above.

Proof. (1) Assume (an)nen is monotonically increasing and bounded above.
(2) By supremum theorem, there exists A such that A = sup{an}.
(3) We use the definition of limit to show that lirf an = A.
n——+0o0o

(4) For every € > 0, by the definition of least upper bound, there exists an
integer N such that ay > A — e.

(5) Since {a,} increases, for every n, n > N implies a,, > an.

(6) Since A is an upper bound of (an)nen, for every n, n > N implies
an < A.
) Consequently, for every n, n > N implies A —¢ < a, < A+e.
) By the definition of convergence, we have lim a, = A,
) n——+oo

9) which proves the theorem. O

Fig. 1. Proof of monotone convergence theorem.

Partial Transformation of Proof Goal. The concept of proof goal models
the task of a mathematical proof, i.e. deriving the conclusion from premises
and proven results. Following the steps of a proof, we implicitly transform the
proof goal by introducing new variables, proving intermediate results, or pos-
ing subgoals. For example, we pose a subgoal in line 3, thereby transforming
the proof goal into two subsequent proof goals: (1) proving ngrfoo an = A, (2)

and proving the conclusion with the intermediate result lim a, = A proven.

n—-+4oo

However, there are circumstances where the subsequent proof goal cannot be
found directly: We pose an assumption € > 0 in line 4 and derive the result
Vn > N, A—e < a, < A+e€inline 7 under the assumption. The overall process
proves the result Ve > 0,dN € N,Vn > N, A — e < a, < A + ¢, which is not
explicitly stated in line 4. Consequently, the transformation of the proof goal
in line 4 is partial. Since each tactic in tactic languages should represent a
clearly defined, complete transformation of the current proof goal, formalizing

448 L. Xie et al.

the proof using tactic languages would involve the extra task of determining
the subsequent proof goal. For example, by inferring the proposition to be
filled in a Coq “assert” tactic. In our work, a structure of partial proof is
included in the design of proof language to model this pattern of proof, it
eliminates the need for additional inferences or structural modifications on
the proof during the task of formalization.

Context-dependent Semantics. Depending on the context, the same natural
language statement could have multiple interpretations, of which the semantic
differences may be subtle. For example, when we write “there exists” in the
proof, at least three interpretations are possible. (1) In the context of proving
an existential statement, a satisfying value has been found for one of the
existential quantifiers in the conclusion to be proved, (2) or a proposition
beginning with an existential quantifier is stated, (3) or similar to the second
case, except that the qualified variable becomes a free variable and can be
used later, as in line 2 and line 4 of the example, where variables A and N
are used in line 3 and line 5, respectively. In order to use the tactic language
of Coq, all those semantic variances must be explicitly formulated. Namely
by an “exists” tactic for the case (1), an existentially quantified variable in
the proposition for the case (2) and a free variable in the proposition for
the case (3). Determining the correct semantic interpretation would require
analysing the context during the process of formalization. Not only is such
an hidden task of analysis generally harder to perform on an unstructured
natural language proof, but it is also indirect on a tactic proof, as tactics do
not explicitly contain information on proof goals. That explains the difficulties
faced by the tactic languages as object languages of automatic formalization.
In our work, the proof language is designed to resemble natural language in
order to streamline the formalization. Moreover, the resemblance allows the
proof language to temporarily preserve the context-dependent semantics, thus
allowing the resolution to be postponed until we can perform static analysis
on the formalized version of the proof.

Overloading of Notation. Sometimes a notational convention may be
employed though not being mathematically rigorous. For example, the
appearance of {a,} in line 2 and line 5 does not represent a singleton but
rather the set containing all elements of the sequence a. Another typical
example is the extensive usage of f(x) for representing the function f itself.
Similar to context-dependent semantics, all mathematical formulas should be
written rigorously in Coq. By performing static analysis on the entire formal
proof, the precise meaning of each expression can also be inferred.

In summary, to address the problems mentioned above, we design a natural-
language-like formal proof language for modeling mathematical proofs. We add
partial proof structures to make them more similar to the natural language
proofs. Furthermore, after transforming the natural formal proof into an abstract
syntax tree by a parser, we can perform static analysis on it to resolve context-
dependent semantics and overloading of notation.

A Natural Formalized Proof Language 449

Accordingly, we implement a framework called ProofGrader for checking
mathematical proofs automatically. For each step of reasoning, corresponding
solvers are chosen heuristically in order to check its correctness. Apart from the
proof checking kernel, the rest of the system is designed to be highly modular so
that our system may fit into different usage scenarios: It is possible to alter the
mathematical objects and the usable theorems involved in the proof, the accept-
able forms of proof steps, or the solvers used for checking. For example, to serve
educational purposes, mild solvers fitting the level of human intuition can be
plugged in instead of powerful ones, and advanced theorems can be temporarily
disabled until they are proved or taught later.

In the rest of this paper, we will first present the design of our proof language
in Sect. 2, with elaborations on several important elements. After that, we give
the formal semantics of our proof language in Sect. 3. We then show the schema
of the workflow of our checker in Sect.4. A detailed description of our solvers
is developed in Sect.5. Section 6 gives an evaluation of the proof checker. And
then we will introduce some related works in Sect. 7. Finally, Sect. 8 is devoted
to a conclusion.

2 Proof Language Design

We focus on defining a natural-language-like proof language, whose structure
faithfully reflects that of natural language. Thus, our natural formal proof lan-
guage is provided with the hierarchy of natural language proof. At the top level
are proof steps, what follows are propositions and terms. A certain amount of
investigations of natural language proofs are done to incorporate common proof
patterns within our proof language. Such a proof language follows predefined
grammar rules but can be read directly as natural language, an explanation of
its grammar can be found in the long version of this paper [21].

To perform proof checking, the natural formal proof language is further trans-
lated into an abstract syntax tree via a parser. Below shows a subset of its defini-
tions. The definitions related to term and prop can be found in the long version
of this paper [21].

(proof) = ‘ProofAction’ (action) | ‘PosePartialProof’ (poseAction)
(proof) (proof) (proof)
| ‘PoseWithoutProof’ (fwd) (prop) | ‘EndPartialProof’
(proof)

| ‘PoseAndProve’ (fwd) (prop)
(proof) (proof)

| ‘ClaimSuffice’ (bwd) (prop) (fwd) ::= ‘FNoHint’
(proof) | ‘FDefinition’ (definition)
| ‘ProveSuffice’ (bwd) (prop) ‘FTheorem’ (theorem)

| ‘ConclWithoutProof’ (fwd) ‘FDeriBothTerms’ (identifier)

|
(proof) (proof) | ‘FAddEqn’ {identifier}*
|
| ‘ConclAndProve’ (fwd) {proof) |

450 L. Xie et al.

(bwd) ::= ‘BNoHint’ | ‘ASet’ (identifier) (term)
| ‘BContra’ | ‘ASetProp’ (prop)
| .. | ‘AExistVar’ (identifier)
(action) ::= ‘AIntros’ (identifier) (poseAction) ::= ‘APoseVar’ (identifier)
| ‘AExists’ (term) {prop}*
| ‘ASuppose’ (prop) | ‘APoseProp’ (prop)

In the following, we will explain the meaning of each proof structure. We will
refer to the names of abstract syntax tree nodes because these names corre-
spond to components of the proof language. Some of our proof structures have
similar functionalities to those of certain tactic language, while others have no
counterpart, which enables us to better express natural language proof.

ProofAction. The field action constitutes an operation on the proof goal, and
the field proof refers to subsequent proof steps.

The design of ProofAction refers to some tactic languages, such as the tactic
intro and exists of Coq [4], which deal with the quantifiers in the proposition to
be proved. That corresponds to our proof action AIntros and AExists. However,
the variety of proof actions is richer than that of tactic language. For example,
ASuppose introduces a premise in the conclusion rather than a variable, which
is also expressed by the tactic intro in Coq. Such a difference is due to the fact
that the proof language models the natural language directly, and thus is more
in line with human intuition.

ASet binds a name to a term, to which the proof can refer later, and the
existence of the term will be verified by the checker to ensure mathematical
rigor.

ASetProp is a generalization of ASet. Instead of introducing a new variable
through an equation, ASetProp introduces new variables through a proposition.
Figure 2 below contrasts the usage of these two proof actions, the one-to-one
correspondence between natural language and our proof language is marked in
background color.

Finally, AExistVar indicates the action of instantiating the variable men-

tioned by an existential quantifier in the last premise in the proof goal. The
usage of AExistVar is further demonstrated in Sect. 4.3 when we perform static
analysis.
In the upper part of Fig. 2, the variable A is set equal to the limit of a sequence,
the checker then verifies whether the limit exists. In the lower part, a variable
k is introduced implicitly due to the introduction of a subsequence, the checker
then verifies whether (a,,),en admits a convergent subsequence. Both of the two
proof steps will add corresponding assumptions to the proof goal.

PoseWithoutProof € PoseAndProve. These two components correspond to for-
ward reasoning. The field fwd indicates the method involved in forward reason-
ing. The field prop denotes the proposition that the step proves. The last field
proof still refers to subsequent proof steps.

A Natural Formalized Proof Language 451

Natural formal proof:
We note A as the limit of the sequence (a,)nen -
. subsequent proof

Abstract syntax tree:
ProofAction (ASet "A" (TBinOp RLim (TInfty PositiveInfty) (TBinder LambdaB "n"

(TApply (TVar "a") (TVar "n"))))) (... subsequent proof)

Natural formal proof:
We note (an,)ren as the convergent subsequence of (an)nen -
. subsequent proof

Abstract syntax tree:
ProofAction (ASetProp (PBinOp CAnd (PBinPred IsSubseq (TBinder LambdaB "k"

(TApply (TVar "a") (TApply (TVar "seq n") (TVar "k")))) (TVar "a"))
(PUnPred Convergent (TBinder LambdaB "k" (TApply (TVar "a") (TApply (TVar
"seq n") (TVar "k"))))))) (... subsequent proof)

Fig. 2. Example of ProofAction.

Depending on the complexity of the reasoning, one may choose to provide a
proof as a justification of the reasoning or just let the checker figure it out. This
makes the difference of PoseWithoutProof and PoseAndProve. PoseAndProve
carries an extra field prop, which is a complete proof showing how to derive
its result. This design is also widespread in tactic languages. An example is the
tactic assert in Coq, which poses a subgoal to be proved. Figure3 shows its
usage scenario, which corresponds to the line 3 of Fig. 1.

Natural formal proof:
We use the definition of limit to show that: lim a, = A .
n—+4o00

. subgoal proof
. subsequent proof
Abstract syntax tree:
PoseAndProve (FDefinition SeqLimit) (PBinPred REq (TBinOp RLim

(TInfty PositiveInfty) (TBinder LambdaB "n" (TApply (TVar "a") (TVar "n"))))
(TVar "A")) (... subgoal proof) (... subsequent proof)

Fig. 3. Example of PoseAndProve.

Since the hint of using the definition of limit is far from sufficient to prove the
result, an additional proof is provided to complete this task. The proven subgoal
is then available in the subsequent proof.

The set of possible methods fwd is rather rich. To name a few, FTheorem
denotes applying a theorem, FAddEqn denotes adding several equations together
to get a new one, and FDeriBothTerms denotes taking a derivative from both
sides of an equation. If no method is indicated, FNoHint is filled in. It is quite
easy to incorporate new methods so this set is highly expandable.

452 L. Xie et al.

ClaimSuffice € ProveSuffice. These two components correspond to backward
reasoning. The first field bwd indicates the method involved in backward reason-
ing, the second field prop denotes the proposition the step proves and the last
field proof refers to subsequent proofs. The distinction between ClaimSuffice
and ProveSuffice follows that between PoseWithoutProof and PoseAndProve.

Backward reasoning signifies that they start from the conclusion to be proved.
The result provided is supposed to imply goal, which will then become the new
goal.

ConclWithoutProof € ConclAndProve. These two components correspond to
the step of deriving the conclusion and terminating the proof, only a field fwd
is presented to indicate the method involved. ConclAndProve allows the choice
of presenting an extra explanatory proof when the derivation of the conclusion
is not immediate.

Basically, ConclWithoutProof corresponds to the last step of the proof, such
as the line 9 “which proves the theorem” in Fig.1, and does not carry much
information. But such a concluding remark imitates natural language proof, and
the similarity to natural language characterizes our proof language.

PosePartialProof & EndPartialProof. In theorem provers, we always need to
explicitly keep a record of the current proof goal. In most cases, this is the overall
proposition to be proved. We can also pose a subgoal and prove it subsequently,
a process represented by the PoseAndProve component in our proof language.

As discussed in Sect. 1, natural language proofs may also involve partial trans-
formations of the proof goal, in the sense that subgoals are not explicitly stated
in advance. Instead, We simply pose certain assumptions and proceed to derive
the subgoals. Refer to Fig.4 for an illustration of how the different forms of
proof goal are in the example Fig.1. The dark gray part of the proof denotes
what we term as a “partial proof”, aligning with the PosePartialProof and
EndPartialProof components in our proof language.

The whole proof Current goal

Va, BoundedAbv(a) A Monolnc(a)
— 34, lim_a, =/

We will show that: lim a, = A.
n—+oo

Proof of one subgoal

For every € > 0, an=A

lim

Add assumption:
£>0

Scope of the variable &

A-e<an<A+e No goal.

End of scope

By the definition of convergence,

we have lim a, = A,
n—+00

End of the subgoal

which proves the theorem.

Fig. 4. Illustration of how the proof goal changes.

A Natural Formalized Proof Language 453

The notion of partial proof can be considered as one innovation of our proof

language. Compared with tactic languages, it offers us extra convenience in mod-
elling natural language proofs.
A partial proof starts with a list of variables and propositions, which then
become the temporary assumptions. This information is carried by the first field
poseAction is the grammar. APoseVar poses a new temporary variable along
with related assumptions, while APoseProp poses a proposition. The former field
proof carries the partial proof, which shall be terminated by EndPartialProof.
After the termination of partial proof, all proven propositions will be altered to
its proper form - without free variables. These altered propositions will become
henceforth available in the subsequent proof - the latter field proof.

In Fig. 4, the variable € and the proposition € > 0 are posed to start a partial
proof. When reaching the result vn > N, A — ¢ < a,, < A+ ¢ at the end of the
partial proof, it is expanded to Ve > 0,Vn > N, A —e¢ < a,, < A+ ¢, which is
subsequently used to prove convergence. Figure 5 shows the how a partial proof
looks like, which corresponds to line 4 of Fig. 1.

Natural formal proof:
For every € >0,
... partial proof in the scope of &
.. subsequent proof
Abstract syntax tree:
PosePartialProof (APoseVar "epsilon" ((PBinPred RGt (TVar "epsilon")

(TNum 0)) :: nil)) (... partial proof in the scope of & ... EndPartialProof)
(... subsequent proof)

Fig. 5. Example of PosePartialProof.

3 The Formal Semantics of Proof Language

In this section, we demonstrate a selected set of the formal semantics of our
proof language. Some semantics of the proof language not covered here can be
found in the extended version of the paper [21]. Since each proof step defines
a transformation of the proof goal, we use the notation (pr,pg) — (pr’,pg’) to
denote that the proof goal pg’ results from the proof goal pg after one or more
proof steps in pr, with pr’ continuing the proof. A proof goal is defined as a pair
(A, C), where A is a list of premises and C' a conclusion that needs to be proved.
In the case of partial proof, the conclusion C does not exist and we note it as [J.

For convenience, we represent a list of premises as a set of propositions,
and we write the triple (pr, A, C) to represent the pair (pr, (A, C)). We use the
notation F'V(A) to denote the set of free variables in the set of propositions
A, the same notation FV(t) is also used to denote the set of free variables in
the term ¢t. We also define a constant QFED such that the proof is successfully
completed when (pr, A,C) = QED.

454 L. Xie et al.

Proof Action.

vé¢ FV(AU{Vz.C})
(ProofAction (Alntros v) pr, A,Vx.C) — (pr, A, C[v/x])

INTROS

Proof actions are proof steps that directly manipulates the proof goal, usually
when some conditions are met. The behavior of AIntros v is to remove the
universal quantifier in the conclusion Vz.C' and replace the variable z in C by
the variable v, when the variable v does not occur freely in the proof goal. The
behavior of other ProofAction statements is similar. Detailed semantics and
descriptions are available in the long version of the paper [21].

Partial Proof.

(pr, AU sP,[0) — (EndPartialProof, A’,[J)
FV(sP) C FV(Au{C}) U {s}

PoseVar
(PosePartialProof (APoseVar s sP) pr pr', A, C)
— (pr', AU (AddVarDep (A" \ (AUIP)) s sP),C)
(pr, AU{P},0) — (EndPartialProof, A’,0)
FV(P)C FV(AU{C})
PosePror

(PosePartialProof (APoseProp P) pr pr', A, C)
— (pr', AU (AddPropDep (4" \ (AU {P})) P),C)

A partial proof first makes one or more assumptions and then deduces a series of
results. After the partial proof terminates, these results are added with depen-
dencies on the assumptions, by prefixing them with universal quantifiers and
prerequisite conditions. The assumptions can be either (1) posing a new variable
satisfying certain conditions, (2) or posing a hypothesis on the existing variables
of the proof goal. These two cases correspond to the constructs APoseVar s sP
and APoseProp P defined above, where s refers to the name of the posed vari-
able, sP a set of assumptions on the posed variable and P an assumption on
existing variables. The two operators AddVarDep and AddPropDep add depen-
dencies on the assumptions to the results derived during the partial proof. Similar
to the subgoal proof, a PosePartialProof statement causes the checker to first
check the partial proof. After reaching EndPartialProof, which marks the end
of the partial proof, the checker integrates the proof goal back to the main proof
by modifying all the derived premises.

The Table 1 shows how the proof goal gets transformed between lines 4-7 in
Fig. 1, which represents a partial proof structure. It first makes an assumption
€ > 0 and then deduces several results. After that, these results are added with
a prefix Ve > 0 to indicate their dependency on the assumption € > 0.

A Natural Formalized Proof Language 455

Table 1. Transformation of proof goal between lines 4-7 in Fig. 1. The upper part of
the table shows the proof goal before reaching line 4 of the proof. The middle part
of the table shows the deduction of intermediate results during the partial proof. The
lower part of the table shows the proof goal after terminating the partial proof in line
7 of the proof.

Premises Conclusion
{an} has an upper bound A= lim a,
n——+oo

{an} is monotonically increasing
there exists A such that A = sup{a,}
A = sup{an}

+ € > 0 (partial proof start) O
+ there exists N such that any > A — €

-+ for all n, if n > N then a,, > an

+ for all n, if n > N then a, < A

+ for all n, if n > N then A — e < a, < A + ¢ (partial proof end)

- Remove all the premises added above A= lim a,
+ for all € > 0, there exists N such that ay > A — ¢ n—tee

+ for all € > 0, there exists N such that for all n, if n > N then
an > anN

+ for all n, there exists N such that if n > N then a, < A

+ for all n, there exists N such that if n > N then
A—e<an<A+e

4 The Workflow of ProofGrader

4.1 Overall Architecture

In this subsection, we will primarily introduce the overall working framework of
ProofGrader. Figure 6 illustrates how the natural formal proof is processed step
by step in our proof checking system to obtain the final result. A larger figure
can be found in the long version of this paper [21] for greater clarity.

The modules described in the squares of the diagram are the main com-
ponents of ProofGrader, which include the parser, static analyser, and proof
checker. These three parts will be discussed in detail in the following. The other
process boxes represent different forms of mathematical proof during the whole
workflow. We utilize a parser to convert the natural formalized proof into an
abstract syntax tree, and then perform static analysis on the abstract syntax
tree to eliminate ambiguities and add omitted steps. The checker takes in the
proof goal generated by the static analyser along with the complete abstract
syntax tree, and checks the proof step by step by predefined rules. Finally, it
confirms whether the proof goal has been proven and generates the final result.

4.2 Proof Parsing

Proof parsing is the first step of the entire workflow of ProofGrader. Since the
design of our proof language also takes a large part into account readability
factors, it may not be the most convenient for the subsequent checking process.
Therefore, we will first convert the natural formal proof into an abstract syntax
tree described in Sect. 2. In our implementation, the lexer and parser are realized
by flex and bison [10,15].

456 L. Xie et al.

O

- Static = Proof - Results obtained

analysis checker

natural formalized proof | mmmp | Parser | mmmp

from verification

Fig. 6. Overall workflow of ProofGrader.

The parser simply performs a plain translation based on the grammar rules,
without making any further modification on the proof structure or the formu-
lation of proposition. These are the subjects of the next section where we will
discuss the static analysis on the proof.

4.3 Static Analysis

As discussed in Sect. 1, natural language proofs exhibit complexities such as
context-dependent semantics and overloading of notation. Given the close resem-
blance of our proof language to natural language and the direct translation
performed by the parser, these properties will be carried into the natural for-
mal proof, and then the abstract syntax tree. Performing static analysis on the
abstract syntax tree allows us to eliminate these problems by reorganizing the
proof into a more rigorous form, ready to be checked by the proof checker.

The static analyser tackles each kind of problem separately with ad hoc
method. For one problematic proof step, proposition or expression, the task
is to choose the right semantic between all the possible interpretations. The
static analyser works by first inferring how the current proof step transforms the
proof goal, based on the previous and subsequent proof goals. It then selects the
semantic corresponding to this transformation, by elaborating the proof step,
proposition or expression into a proper form. Judging from the problems we
are currently solving by static analysis, most of them are accompanied by the
appearance of free variables. So it is often the case to perform a lexical scope
analysis.

Handling Context-dependent Semantics. The context-dependent semantics we
currently address are stated in the descriptions of Fig. 1. In this example, the
static analyser infers the correct semantic from the context, as shown in the
inference steps below. As a reminder, the three possible interpretations of “there
exists A such that A = sup{a,}” are respectively: (1) a value sup{a,} has

A Natural Formalized Proof Language 457

been found for an existential quantifier in the conclusion to be proved, (2) an
intermediate result 3A = sup{a,} is stated, where A is qualified by a quantifier,
(3) a variable A is given the value sup{a,} after proving the existence of this
supremum.

|interpretation (1) ‘ —_— |proof goal beginning with 3 analyser palse

|interpretation (2) ‘ |A unbounded thereafter| 202l False

|interpretation (3) ‘ ——— | A bounded thereafter | _nalYSeT, Trye

The three potential semantic interpretations appear syntactically identical in
the proof. Therefore, the static analyser takes the responsibility for reflecting
the result of the above analysis on the abstract syntax tree through modifica-
tion. This is where the proof action AExistVar comes into play. Placed immedi-
ately after a proposition starting with an existential quantifier, it indicates the
instantiation of the variable mentioned by the quantifier, thus bringing about
the semantics corresponding to case (3), namely binding variable A of the value.

Algorithm 1 illustrates the procedure of handling context-dependent seman-
tics in the cases of PoseWithoutProof and PoseAndProve, the processing
of other cases follows a similar approach.

Algorithm 1 HCDS: Handling Context-dependent Semantics

Input: the original proof Pr before static analysis
Output: the modified proof with ontext-dependent Semantics eliminated
‘When Pr = PoseWithoutProof fwd P0 Pr0
PO — PQuant exists “az” P1
.

z” occur freely in Pr0
Then HCDS(Pr) = PoseWithoutProof fwd PO (ProofAction (AExistVar “z”) HCDS(Pr0))

When Pr = PoseAndProve fwd PO Pr0 Prl
PO — PQuant exists “x” P1
“x” occur freely in Prl
Then HCDS(Pr) = PoseAndProve fwd PO (HCDS(Pr0) (ProofAction (AExistVar “z”)

HCDS(Pr1))

Handling Overloading of Notation. If there is only one possible interpretation
for notation overloading, there is no need for analysis and the static analyser
simply restores its rigorous form. So far, the cases we have encountered with
multiple possible interpretations for notation overloading all involve the use of
formal variables. In such cases, the static analyser examines the appearance of
free variables. As an example, the {a,} in line 2 of Fig.1 admits two possible
interpretations: (1) the singleton {a,}, (2) or a set containing all elements of
the sequence a. The correct interpretation depends on whether the variable n
is bound to a value in the current proof goal. Similarly, if x is identified as a

458 L. Xie et al.

free variable in the proof goal, f(x) will be transformed into either f or Az.f(z)
rather than the value of x applied to the function f.

Algorithm 2 illustrates the procedure for handling the notation overloading
of f(z) in the cases of PoseWithoutProof and ProofAction (ASet x t), the
processing of other cases follows a similar approach.

Algorithm 2 HON: Handling Overloading of Notation

Input: the original proof pr before static analysis
list of binded variables binded _wvarlist from the beginning to the current point of the proof
Output: the modified proof with overloading of notation eliminated
‘When Pr = PoseWithoutProof fwd PO Pr0
PO — Eq (TApply (“f7) (“27)) 1
if “z” is not in binded_varlist
Then HON(Pr, binded _varlist) = PoseWithoutProof fwd (Eq (“f”) (TBinder Lambda “z” t1))
HON(Pr0, binded _varlist)

When pr = ProofAction (ASet “z” t) Pr0
Then HON(Pr, binded _varlist) = ProofAction (ASet “x” t) HON(Pr0, “x” :: binded_varlist)

4.4 Proof Checking

Proof checking is the final step of the entire workflow of ProofGrader. The checker
takes the proof and the proof goal elaborated by the static analyser as input.
For each proof step, the checker takes the current proof goal and checks the
step according to the formal semantics presented in Sect.3, it computes the
subsequent proof goal along with a boolean value indicating whether the step is
accepted. By iteratively repeating this process, the proof checker finally generates
a list of boolean values indicating the correctness of each proof step. In order
to help with proposition checking, we also develop several solvers and a solver
manager system. We will introduce them in Sect.5. The entire proof checking
process is detailed in Fig. 7.

5 Solver Manager

The solver manager is an important component of the proof checker, and there-
fore, we will introduce it separately here. It is primarily used to verify the correct-
ness of mathematical propositions under certain conditions. When it comes to
proving and simplifying mathematical expressions, we combine different solvers
to check if the current proposition can be derived from known results using
specific rules.

Each solver corresponds to a deduction rule based on specific mathemat-
ical concepts, and implements the corresponding algorithm internally in the
proof checker. Different solvers are responsible for handling different types of
mathematical expressions. For example, when dealing with expressions involving
algebraic operators, ProofGrader utilizes algebra-related solvers for simplifica-
tion. Similarly, solvers for trigonometric functions, exponential and logarithm,
sequential limit, and other mathematical concepts are employed to handle cor-
responding cases.

459

A Natural Formalized Proof Language

SUOIPUOD UMow) 0} .d Aidus s, ppe

08U aNSIN0a1 Aq Dalesauas d Aiana 1o}

SUOPUY umow) 0} .d Aidwi

£10}. PpE

ﬁoﬁutm.ﬁ!keo_!!& bai.e.

8U0Q BUD

“Bunyoet Jooid Jo ssed01] L 31

<“—{ SUORIPUOD UMOW)Y 0} S PPE : BjElS MaU < uomisdosd > doigesod

SUORIPUOD UMOUY O} " ‘ZS ‘LS PPE : 91EIS MaU <" ZS 1S 11 doid > < X : Jayguapl> Jepasod

10 03y0 aNSINdR) 2dfy
aje1s jooud mau sjean T wrew

SUORIPUOD UMOUY

dppe

d e =
/ 1206 j00id abueyd <X JayRuap! > SORUIY
<ub " Zb‘Lb ”E_Eﬁoﬁvi
I
<6dvonsodosd» | “feobjood |

/

01 08U aAISIND8) Aq pajesausb
SUORIPUOD UMOUY MBU PUE

7 60 dun . o 64 36ueyd - eis wau ?asﬁz.:!at .. e T
8dfy ain A|.. 10 2 UOISNU0D <=, J0}J00id > < UONSOdOd > <3N PIEAVREA > BIUNSINDLY
s - e4u008 JenEq YolRW e S
-d " 'Zb *b , JO SSBUIIBLI0D OBUD | JBAIOS IYBAS PBJRS - — WIHONE -~ <duogsodod > < ajnu pieNPE > soyngweD
3iNJ 2210U3 0} BUIPIOIE g
6d 86ueyo : sjels MU aﬁaﬁsoaui-ue Al.” UOISNPUOD Jo} J00id > < 9N pIeAO) 1001dPUYIOU0D
. a1e3s Joosd MU alean T w108y 18283NDS3 :
d oyur 6d abueyd : aje}s Mau e e— 1§ <xam 1001 >
W3ppY3 T e TR oo S
L 6d~Jub * ‘zb ‘yb . J0 SSBUIAL0D YBYD < adA) wy) > wasoayL 4 — BINJ pIemo} J00IINOUWMPUOD
sanos ayoeds paes | e <0dk 9D > UoRRQ3 e
.4~ ub " ‘Zb ‘Lb . J0 S53UPBLID 308U WIHONS — oo
juawayeys jooid
SUORPU0 uoge jo ssoddngy
umow 0 d ppe aue!l_-sx:ﬁ_ - A_”E!vvusg Sﬂou..a_ﬁ!_
2d4} uogoe 0} HuIP020!

460 L. Xie et al.

When users write proofs, they must adhere to the steps supported by the
solvers. In Sect. 1, it was noted that Al-generated formal proofs sometimes use
solvers like Z3 [8] to check propositions. However, Z3 possesses strong reasoning
capabilities and can sometimes prove the correctness of conclusions even if the
original deduction process contains error. On the other hand, our solver does
not engage in excessively powerful reasoning. It only supports relatively obvious
deduction methods in proofs and does not allow excessive omission of steps. This
approach aims to reflect the correctness of the original proof more accurately.
Additionally, since we can provide explicit deduction rules supported by each
solver, users can clearly know which steps can be omitted and which steps cannot
be omitted in their proof process.

Before presenting the design of the solver manager, it is necessary to first
define the structure of the solver, as these two are closely related. Each solver
consists of the following four components:

— solve(s,p) : the function used to verify the correctness of a proposition takes
two parameters: the current proof goal and the proposition itself. It can either
return false when the proposition does not pass the solver, or a list of proposi-
tions, indicating that after being processed by the current solver, the correct-
ness of the original proposition can be determined by individually checking
the propositions in the list. This design allows us to combine multiple solvers
to simplify a proposition. The list can contain only one proposition, which
means the solver simplifies the original proposition and passes it to the next
solver. An empty list indicates that the current proposition is accepted by
the solver.

— fee : the cost of this solver. While we want to combine multiple solvers,
we cannot endlessly repeat using various solvers, as it may result in non-
termination. Therefore, we need to set an upper limit on the total cost within
the solver manager and define the cost of each solver.

— default-priority : the default priority of solvers. When dealing with mathe-
matical propositions that do not exhibit any prominent characteristics, solvers
can be selected based on their default priority levels.

— priority(p) : the function used to compute the dynamic priority. Given the
current proposition as input, this function returns the dynamic priority of
the solver. For example, when handling a mathematical proposition without
limits, solvers related to sequential limit may have a low priority or even
be unavailable. However, when dealing with limit-related propositions, these
solvers would have a high priority. Therefore, it is necessary to dynamically
adjust the priority of solvers based on the specific proposition. This prepares
us for the subsequent development of the solver manager.

Based on the structure of the solver, we implemente a solver manager capable
of dynamically scheduling various solvers by combining dynamic priorities. The
specific algorithms and design can be found in the long version of this paper [21].

A Natural Formalized Proof Language 461

6 Evaluation

In this section, we give an evaluation of our proof checking system as well as
our proof language. We first run our system on a set of sample mathemati-
cal proofs, covering the topic of arithmetic, trigonometric functions, exponen-
tial and logarithm, inequality, derivative, sequential limit and function con-
tinuity. The source code of our system and the dataset are available at:
https://github.com/Laplace-Demon/ProofGrader. We then compare the fea-
tures of our proof language with other proof languages and proof checking tools.

6.1 Performance

We test our system on a dataset of 52 mathematical proofs, Table 2 shows the
average time and memory overhead of the proof parser and the checker on each
of the topics, along with the average file size of the proof. We can observe that
our proof parser and checker perform their task in a reasonable amount of time.

Table 2. Runtime and memory usage of the parser and checker on different topics.

Examples Parser Checker

Topic Number | File size (bytes) | Time (ms) | Memory (kb) | Time (ms) | Memory (kb)
arithmetic 6 271 34 3584 477 3456
trigonometric functions 8 599 53 3712 1409 3456
exponential and logarithm | 3 371 40 3840 506 3456
inequality 10 395 58 3712 528 3456
derivative 3 385 75 3328 760 3328
sequential limit evaluation | 10 550 58 3840 701 3328
sequential limit proof 10 1027 78 3968 670 3328
function continuity proof 2 923 68 3712 7758 3456

6.2 Comparison of Features

In the Table3 below, we compare the features of our proof language with some
other proof languages and proof checking tools. The term “transformation chain”
refers to the ability to handle and perform automated reasoning on a series of
consecutive transformation derivations, such as:

. Jr+1-1 y T ve+1+1 2
1m ——7——— = 11im .
e=0/x+1—-1 20 (Jz+1)24+Yx+1+1 T 3

Our proof checker aims to provide automated deduction capabilities that align
with human judgment, while excessive step omissions are not allowed.

In terms of readability, our natural formal proof can be read with the same
effort of reading a natural language mathematical proof. Even the abstract syn-
tax tree generated by the parser remains readable since the components bear a
mnemonic name.

462 L. Xie et al.

In terms of static analysis, most theorem provers like Coq and Isabelle pri-
marily support propositional-level static analysis. They utilize type inference to
fill in missing information in user-written proofs. However, they do not perform
static analysis on the entire proof. Regarding partial proofs, while it is some-
times possible to reorganize a proof to avoid partial proofs, we aim to preserve
the characteristics of natural language proofs. Users should be able to write
mathematical proofs without additional effort.

The work of Waterproof [18] aims to help students understand mathemat-
ical proofs. Therefore, its language readability falls between natural language
and theorem provers. The proof checking functionality of Waterproof relies on
Coq implementation, so it inherits some limitations of Coq as well. Diproche
[6] utilizes natural language fragments as its input language. Due to its lack of
support for static analysis and partial proofs, it imposes stricter requirements on
the types and structure of proofs being written. Lurch [7] is limited to checking
proofs in propositional logic and naive set theory. It does not have automatic
reasoning capabilities and relies on users to provide detailed proofs for checking.

Table 3. Comparison of features of different mathematical proof checking tools.

Feature ProofGrader | WaterProof | Diproche | Lurch | Isabelle [16] | Coq [2]
Natural language fragment | v/ X v v X X

Static analysis proof-level X X X prop-level prop-level
Partial proof v X X X X X
Transformation chains v X v X v [3] X

7 Related Work

Proof assistants and other proof checkers. Recent decades have seen the emer-
gence of various proof languages. A well-known work is Ltac [9] for the theorem
prover Coq, which provides convenience for constructing proofs and facilitates
better proof automation. Another famous one is that of Isar [19] for the system
Isabelle. One objective of Isar is to provide a more human-readable proof lan-
guage than before. Despite their efforts to improve readability, the learning curve
for using these tools remains high. Wemmenhove et al. developed an educational
software called Waterproof [18] based on this to assist students in practicing
proofs. Since they still choose to rely on the tactic library extended with the
Ltac2 tactic language, Waterproof has not actually gained stronger expressive
power than these tactic-based proof language. Additionally, the proof assistant
Agda [5] also employs some proof notations that resemble natural language,
such as using equation chain instead of the “rewrite” tactic used in Coq. How-
ever, despite these advancements, they still struggle to effectively support the
structure of partial proofs. While they can perform static analysis at the proposi-
tional level, such as type inference, they are unable to perform static analysis on

A Natural Formalized Proof Language 463

the entire proof. In addition, tools mentioned in Sect. 6.2, such as Diproche and
Lurch, although they support controlled natural language input, have stricter
requirements on the notation and structure of proofs being written.

Machine learning for formalization. Machine learning techniques have been used
in the formalization of informal proofs. The work of Yuhuai Wu et al. [20] based
on large language models can correctly transform 25.3% of the solution for math-
ematical competition problems in MATH dataset [12] into formal specifications
in Isabelle/HOL. In the work of Jiang et al. [13], they introduce Draft, Sketch,
and Prove (DSP), a method that maps informal proofs to formal proof sketches,
The accuracy was improved to 39.3% on the same dataset [12]. And the auto-
matic theorem prover implemented by GPT-f [17] achieved a completion rate
of 56.22% on their test set. The purpose of formalizing proofs with Al-based
methods is to ensure that the proven proposition is correct, especially when
proving previously unproven propositions in mathematical research. Since the
target language of the transformation is often tactic-based proof languages that
differ greatly from natural language, these works mainly use the original proof
to guide theorem provers to complete the proof, rather than truly transforming
the original proof into a formalized proof. In this case, because the language we
designed combines formal rigor with similarity to natural language, if Al auto-
matic translation is set to use our language as the target, it will complement our
work well and lead to better results.

8 Conclusion

In this paper, we present our design of a natural-formalized proof language
and the implementation of a mathematical proof checker. Compared to exist-
ing tactic-based proof language, our proof language has more expressive power
thanks to the incorporation of partial proof. To cope with the characteristics of
natural language proof, such as context-dependent semantics and overloading of
notation, tactic language provides a fine-grained but cumbersome formal speci-
fication in the hope that someone can correctly reproduce the proof, while our
proof language can automatically fix these problems through static analysis. All
these factors result in better readability and an easier formalization process.

Regarding the process of proof checking, we implement a solver manager
responsible for managing various automated proof checking strategies. It selects
the most suitable strategies based on the form and contextual environment of
the proposition to assess its correctness. Building upon this, the proof checker
takes the proof and the proof goal provided by the static analyser, applies the
appropriate checking methods, updates the proof goal iteratively, and ultimately
completes the checking process.

Acknowledgements. This material is based upon work supported by NSF China
92370201.

464 L. Xie et al.
References
1. Appel, K.I., Haken, W.: Every Planar Map is Four Colorable, vol. 98. American

10.
11.
12.
13.
14.
15.
16.

17.

18.

19.

20.

21.

Mathematical Soc. (1989)

Barras, B., et al.: The coq proof assistant reference manual. INRIA, version 6(11)
(1999)

Bauer, G., Wenzel, M.: Calculational reasoning revisited an Isabelle/Isar experi-
ence. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp.
75-90. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44755-5 7
Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions, 1st (edn.) Springer, Incorpo-
rated (2010)

Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda — a functional language
with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 73-78. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03359-9 6

Carl, M., Krapf, R.: Diproche—ein automatisierter tutor fiir den einstieg ins
beweisen. Digitale Kompetenzen und Curriculare Konsequenzen, p. 43 (2020)
Carter, N.C., Monks, K.G.: Using the proof-checking word processor lurch to teach
proof-writing (2014)

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov,
A. (eds.) LPAR 2000. LNAI, vol. 1955, pp. 85-95. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44404-1 7

Donnelly, C.: Bison the YACC-compatible parser generator. Technical report, Free
Software Foundation (1988)

Gonthier, G., et al.: Formal proof-the four-color theorem. Notices AMS 55(11),
1382-1393 (2008)

Hendrycks, D., et al.: Measuring mathematical problem solving with the math
dataset (2021)

Jiang, A.Q., et al.: Draft, sketch, and prove: Guiding formal theorem provers with
informal proofs. arXiv preprint arXiv:2210.12283 (2022)

Lample, G., et al.: Hypertree proof search for neural theorem proving. In: Advances
in Neural Information Processing Systems, vol. 35, pp. 26337-26349 (2022)
Levine, J.: Flex & Bison: Text Processing Tools. O'Reilly Media, Inc. (2009)
Paulson, L.C.: Isabelle: A Generic Theorem Prover. Springer, Berlin (1994)

Polu, S., Sutskever, I.: Generative language modeling for automated theorem prov-
ing. arXiv preprint arXiv:2009.03393 (2020)

Wemmenhove, J., Beurskens, T., McCarren, S., Moraal, J., Tuin, D., Portegies, J.:
Waterproof: educational software for learning how to write mathematical proofs.
arXiv preprint arXiv:2211.13513 (2022)

Wenzel, M.: Isar - a generic interpretative approach to readable formal proof doc-
uments. In: International Conference on Theorem Proving in Higher Order Logics
(1999)

Wu, Y., et al.: Autoformalization with large language models. Advances in Neural
Information Processing Systems, vol. 35, pp. 32353-32368 (2022)

Xie, L., Hui, Z., Cao, Q.: A natural formalized proof language (long version). arXiv
preprint arXiv:2405.07973 (2024)

